

Robust management and control of smart multi-carrier energy systems

Tomás Pippia

ESR 2.3

Previously on ESR 2.3...

- PhD student at TU Delft
- Currently carrying out the first secondment at UPC until mid July
- Working on:
 - Extension of tube-based MPC to hybrid systems
 - Stability analysis for time-varying partitioned systems (joint work with ESR 1.1, Wicak Ananduta)

Outline

- Extension of tube-based MPC to hybrid systems
- Stability analysis for time-varying partitioned systems

μCHPs and Hybrid Systems

- "Developing robust control methods [...] for mixed electricity/gas networks"
- μ-Combined Heat and Power (μCHP) plants, described using hybrid models
- Hybrid models include both continuous and discrete variables
- Focus on Piecewise Affine (PWA) models

$$x(k+1) = A_i x(k) + B_i u(k) + f_i$$

$$y(k) = C_i x(k) + D_i u(k) + g_i \text{ for } \begin{bmatrix} x(k) \\ u(k) \end{bmatrix} \in \Omega_i$$

Model Predictive Control

- The adopted control strategy is Model Predictive Control (MPC)
- In MPC, a model is used to predict the future states of the system
- An optimal input is computed and at the next time instant the problem is solved again
- Robust MPC copes with disturbances in the model

Tube-based MPC (I)

- In tube-based MPC, the state is split into nominal and disturbed
- The nominal state is subject to tighter constraints with respect to the disturbed one
- The disturbed state trajectory will lie in a "tube" that satisfies the constraints

Disturbed state:

$$x(k+1) = Ax(k) + Bu(k) + w(k)$$

Nominal state:

$$\hat{x}(k+1) = A\hat{x}(k) + B\hat{u}(k)$$

Tube-based MPC (II)

- Tube-based MPC developed mainly for linear systems
- Extension of tube-based MPC for hybrid systems
- Challenges:
 - The nominal state and real state might be in different modes of operation
 - Find a robust positively invariant set independently of the mode of operation

Outline

- Extension of tube-based MPC to hybrid systems
- Stability analysis for time-varying partitioned systems

Time-varying partition (I)

- Large-scale systems are usually split into smaller subnetworks
- The partitioning process is usually done offline
- Power network are subject to disturbances and changes in generation/load profiles

Time-varying partition (II)

• (Re)Partition the system periodically

Time-varying partition (III)

- Challenge: guarantee stability of the system even during the partition change
- Idea: use results from switching systems theory!

Switching systems (I)

Dynamics are given by

$$x(k+1) = A_{\sigma(k)}x(k)$$

- We suppose $A_{\sigma(k)}$ matrices are Schur stable
- The switched system is asymptotically stable if some conditions on $\sigma(k)$ are met
- Average dwell time

Switching systems (II)

- We consider dynamics of the centralized system
- Each subsystem's dynamics is Schur stable

Switching systems (III)

- Define the activation time as $k_i k_{i-1}$
- During activation time, system follows dynamics $x(k+1) = A_i x(k)$
- State can be written as $x(k) = A_{i+1}^{k-k_i}...A_1^{k_1}x(0)$
- Through some properties, we reach inequality

$$||x(k)|| \le ||A_i^{k-k_i}|| \dots ||A_1^{k_1}|| ||x(0)|| \le c\lambda^k ||x(0)||, \ \lambda \in (0,1)$$

Key point: "slow" switching!

Conclusions and future work

- Hybrid systems like μCHPs require a robust control action
- Tube-based MPC can be used to guarantee satisfaction of constraints at all times
- Time-varying partitioning can be used to better adapt to the intermittent nature of renewable energy sources
- Stability can be achieved using results from switching systems

